Mstu1, an APSES transcription factor, is required for appressorium-mediated infection in Magnaporthe grisea.
نویسندگان
چکیده
The APSES protein family includes important transcriptional regulators of morphological processes in ascomycetes. We identified a deletion mutant of the APSES protein Mstu1 in Magnaporthe grisea that showed reduced conidiation and mycelial growth. Mstu1 formed a number of appressoria comparable to the wild type, although appressorium formation was delayed. In M. grisea, rapid transfer of conidial glycogen and lipid droplets to incipient appressoria is required for appressorial turgor generation, which the fungus uses to penetrate plant cuticles. Appressorial turgor was low in mstu1 and the mutant was deficient in appressorium-mediated invasion of rice leaves. The transfer of conidial glycogen and lipid droplets was remarkably delayed in mstu1, and a consequent delay in degradation of these conidial reserves was observed. Our results indicate that Mstu1 is required for appressorium-mediated infection due to its involvement in the mobilization of lipids and glycogen.
منابع مشابه
Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea.
The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmo...
متن کاملcDNA Subtractive Cloning of Genes Expressed during Early Stage of Appressorium Formation by Magnaporthe grisea.
The conidial germ tube of the fungus Magnaporthe grisea differentiates an infection-specific structure, an appressorium, for penetration into the host plant. Formation of the appressorium is also observed on synthetic solid substrata such as polycarbonate. We found that a plant lectin, concanavalin A, specifically suppressed the appressorium formation without affecting the germling adhesion if ...
متن کاملMagnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence.
The rice blast fungus Magnaporthe grisea infects its host by forming a specialized infection structure, the appressorium, on the plant leaf. The enormous turgor pressure generated within the appressorium drives the emerging penetration peg forcefully through the plant cuticle. Hitherto, the involvement of cutinase(s) in this process has remained unproven. We identified a specific M. grisea cuti...
متن کاملCellular localization and role of kinase activity of PMK1 in Magnaporthe grisea.
A mitogen-activated protein (MAP) kinase gene, PMK1, is known to regulate appressorium formation and infectious hyphal growth in the rice blast fungus Magnaporthe grisea. In this study, we constructed a green fluorescent protein gene-PMK1 fusion (GFP-PMK1) to examine the expression and localization of PMK1 in M. grisea during infection-related morphogenesis. The GFP-PMK1 fusion encoded a functi...
متن کاملA fungal metallothionein is required for pathogenicity of Magnaporthe grisea.
The causal agent of rice blast disease, the ascomycete fungus Magnaporthe grisea, infects rice (Oryza sativa) plants by means of specialized infection structures called appressoria, which are formed on the leaf surface and mechanically rupture the cuticle. We have identified a gene, Magnaporthe metallothionein 1 (MMT1), which is highly expressed throughout growth and development by M. grisea an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioscience, biotechnology, and biochemistry
دوره 73 8 شماره
صفحات -
تاریخ انتشار 2009